Context Engine
Interprets metadata, domain rules, user intent, and operational signals to determine governance response.
DuraGraph provides infrastructure-level AI contextual governance that adapts to intent, sensitivity, environment, and trust boundaries.
Traditional rule-based governance fails modern AI systems:
| Challenge | Impact |
|---|---|
| 45% of enterprises experienced GenAI data leakage | Static rules can’t prevent dynamic threats |
| Only 25% have implemented AI governance | Governance is seen as blocker, not enabler |
| Multi-modal AI combines diverse data | Single rule sets can’t cover all scenarios |
The missing dimension: CONTEXT determines acceptable risk, privacy requirements, reasoning boundaries, and interaction patterns.
┌─────────────────────────────────────────────────────────────────────┐│ AI CONTEXTUAL GOVERNANCE LAYER │├─────────────────────────────────────────────────────────────────────┤│ ││ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐ ││ │ │ │ Policy │ │ Automated │ ││ │ Context Engine │ │ Orchestration │ │ Risk │ ││ │ │ │ Layer │ │ Evaluation │ ││ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘ ││ │ │ │ ││ └───────────────────┼───────────────────┘ ││ │ ││ ┌────────────────┐ ┌──────┴───────┐ ┌────────────────┐ ││ │ AI │ │ Behavioral │ │ Multi-Environ │ ││ │ Observability │◄─┤ Guardrails │──┤ Enforcement │ ││ │ │ │ │ │ │ ││ └────────────────┘ └──────────────┘ └────────────────┘ ││ │└─────────────────────────────────────────────────────────────────────┘Context Engine
Interprets metadata, domain rules, user intent, and operational signals to determine governance response.
Policy Orchestration
Programmable, composable governance building blocks with hot-reload and inheritance.
Behavioral Guardrails
Adaptive guardrails that prevent misuse, hallucinations, and drift from expected behavior.
Risk Evaluation
Real-time scoring based on sensitivity, impact, and probability of misalignment.
from duragraph import Graph, llm_nodefrom duragraph.governance import GovernanceEngine, Policy
# Create governance enginegovernance = GovernanceEngine()
# Define a policypolicy = Policy( name="customer_support", guardrails=[ {"type": "output_filter", "config": {"block_pii": True}}, {"type": "topic_restriction", "config": {"blocked": ["competitor_info"]}}, ], audit_level="full",)
governance.register_policy(policy)
@Graphclass GoverndAssistant: @llm_node(governance=governance) async def respond(self, state: State) -> State: # Governance automatically applied response = await self.llm.complete(state.messages) state.response = response return statefrom duragraph.governance import ContextEngine, GovernanceProfile
# Context engine evaluates situational factorscontext_engine = ContextEngine()
# Evaluate contextprofile = await context_engine.evaluate( data_metadata={"classification": "confidential", "contains_pii": True}, user_context={"role": "support_agent", "department": "customer_success"}, intent="answer_billing_question", environment="production",)
# Profile contains:# - risk_score: 0.65# - allowed_actions: ["read_account", "view_invoice"]# - required_controls: ["audit_log", "pii_redaction"]# - applicable_policies: ["customer_support", "pii_protection"]DuraGraph evaluates risk across multiple dimensions:
sensitivity_factors = { "classification_level": "confidential", # public, internal, confidential, restricted "pii_presence": True, "regulatory_scope": ["GDPR", "HIPAA"],}impact_factors = { "reversibility": "low", # Can decision be undone? "affected_parties": 50, # Number of people impacted "financial_exposure": 10000, # Potential monetary impact}operational_factors = { "time_pressure": "normal", # urgent, normal, relaxed "human_oversight": True, # Is human review available? "system_confidence": 0.85, # Model certainty}DuraGraph supports progressive governance maturity:
| Level | Name | Characteristics |
|---|---|---|
| 1 | Reactive | Static policies, manual updates, post-hoc audit |
| 2 | Proactive | Dynamic policies, real-time evaluation, continuous monitoring |
| 3 | Adaptive | Self-adjusting policies, predictive risk, autonomous guardrails |
| 4 | Intelligent | Goal-aware governance, self-healing controls, strategic trust |
DuraGraph governance aligns with:
POST /api/v1/governance/context/evaluate{ "data_metadata": { "classification": "confidential", "source": "customer_database" }, "user_context": { "user_id": "user_123", "role": "analyst" }, "intent": "generate_report", "environment": "production"}Response:
{ "governance_profile": { "policies": ["data_analyst", "pii_protection"], "risk_level": "medium" }, "risk_score": 0.45, "allowed_actions": ["read", "aggregate", "export_anonymized"], "required_controls": ["audit_log", "data_minimization"]}# List policiesGET /api/v1/governance/policies
# Create policyPOST /api/v1/governance/policies
# Simulate policyPOST /api/v1/governance/policies/simulateGuardrails
Configure behavioral guardrails for your AI workflows
Trust Framework
Implement strategic trust with audit trails